A Generative Bayesian Model for Aggregating Experts' Probabilities
نویسنده
چکیده
In order to improve forecasts, a decisionmaker often combines probabilities given by various sources, such as human experts and machine learning classifiers. When few training data are available, aggregation can be improved by incorporating prior knowledge about the event being forecasted and about salient properties of the experts. To this end, we develop a generative Bayesian aggregation model for probabilistic classification. The model includes an event-specific prior, measures of individual experts’ bias, calibration, accuracy, and a measure of dependence betweeen experts. Rather than require absolute measures, we show that aggregation may be expressed in terms of relative accuracy between experts. The model results in a weighted logarithmic opinion pool (LogOps) that satisfies consistency criteria such as the external Bayesian property. We derive analytic solutions for independent and for exchangeable experts. Empirical tests demonstrate the model’s use, comparing its accuracy with other aggregation methods.
منابع مشابه
Non-parametric Bayesian graph models reveal community structure in resting state fMRI
Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian models for node clustering in complex networks. In particular, we test their ability to predict uns...
متن کاملA Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
متن کاملAn Interpretable Stroke Prediction Model using Rules and Bayesian Analysis
We aim to produce predictive models that are not only accurate, but are also interpretable to human experts. We introduce a generative model called the Bayesian List Machine for fitting decision lists, a type of interpretable classifier, to data. We use the model to predict stroke in atrial fibrillation patients, and produce predictive models that are simple enough to be understood by patients ...
متن کاملDeveloping an Integrated Simulation Model of Bayesian-networks to Estimate the Completion Cost of a Project under Risk: Case Study on Phase 13 of South Pars Gas Field Development Projects
Objective: The aim of this paper is to propose a new approach to assess the aggregated impact of risks on the completion cost of a construction project. Such an aggregated impact includes the main impacts of risks as well as the impacts of interactions caused by dependencies among them. Methods: In this study, Monte Carlo simulation and Bayesian Networks methods are combined to present a frame...
متن کاملBayesian Renewables Scenario Generation via Deep Generative Networks
We present a method to generate renewable scenarios using Bayesian probabilities by implementing the Bayesian generative adversarial network (Bayesian GAN), which is a variant of generative adversarial networks based on two interconnected deep neural networks. By using a Bayesian formulation, generators can be constructed and trained to produce scenarios that capture different salient modes in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004